機械学習や数値解析で頻繁に用いられる勾配降下法は最適化問題に解を与える有力手法です。ここではアルゴリズムを理解するために、最も単純な1変数関数と2変数関数における勾配降下法の実装を学習します。
続きを読む2020年 2月 の投稿一覧
多次元解析チャートで3個以上の多変量グリッドサーチ結果を可視化
機械学習は多数のハイパーパラメータの組み合わせにより予測精度が決まります。ここではヒートマップでは表現出来ない3つ以上のパラメータとスコアの関係性可視化方法である多次元解析チャートをグリッドサーチの結果を使って紹介します。
続きを読むPythonのグリッドサーチで決定木のハイパーパラメータを調整!
機械学習は万能な方法ではなく、ハイパーパラメータの調整が不可欠です。ここでは最も理解しやすい決定木分析を使ってグリッドサーチというハイパーパラメータ調整方法を習得することを目標とします。
続きを読むPythonで簡単にホールドアウト法用のデータ分割をする方法
機械学習ではホールドアウト法として1つのデータセットから訓練データとテストデータを分けることをよく行います。ここでは、Pythonのscikit-learnに含まれるtrain_test_splitを使った簡単なデータ分割方法を紹介します。
続きを読むPythonの4次ルンゲ・クッタ法で多自由度連成振動を解く方法
多数の質点系から成る多自由度系は各点の振動が影響し合う連成振動をします。連成振動を解く方法は色々ありますが、ここでは有名な4次のルンゲ・クッタ法をPythonで作成して解いてみます。
続きを読む【G検定チートシート】AI関連法律や動向含む試験当日のカンペ
JDLAが主催するディープラーニングG検定は試験時にGoogle検索や書籍の参照がOKなWeb検定です。ここでは筆者が受験時に素早く用語の参照ができるようメモを残しておきます。
続きを読むPythonで相関係数別に色分けするペアプロットを自作してみた
ペアプロット(行列散布図)は多変量データの良い可視化手法です。seabornなら一発ですが、細かい可視化条件を付け難いため、ここではPythonのmatplotlibで自作し、相関係数によって背景色が変わるようにしてみました。
続きを読む【G検定の学習】ディープラーニングの概要と具体的な手法
JDLAが主催するG検定ではディープラーニングの全体像や各種問題点、手法に関する問題が出題されます。ここでは、ディープラーニングの概要と具体的な手法の紹介をしていきます。
続きを読む