教師なし学習であるクラスタリングにはk-means法という手法があります。ここではk-means法のアルゴリズム概要を説明し、簡単に計算が可能なscikit-learnを使ったPythonによるサンプルコードを紹介します。
続きを読むscikit-learn
Python/sklearnのk近傍法!kNNで多クラス分類する
k近傍法(kNN法)は数ある機械学習手法の中でも簡単なアルゴリズムを持っています。ここではkNN法の概要とPython/scikit-learnによるコードで実際に簡単な分類問題を解く方法を習得することを目標とします。
続きを読むPython決定木可視化!Graphvizの導入とdot処理方法
機械学習の決定木分析で構築されたツリーは、コンピュータが生成した条件分岐ノードの情報が記載されます。ここではPython/scikit-learnで計算した決定木をdotファイルで出力し、Graphvizというツールをインストールして可視化する方法を紹介します。
続きを読むPythonサポートベクターマシンで回帰分析!SVRの概要と実装
機械学習ではサポートベクターマシン(SVM)が非常に優秀な分類性能を示しますが、SVMはサポートベクター回帰(SVR)として回帰問題にも適用が可能です。ここではSVRの概要とPython/scikit-learnによる実装までを紹介します。
続きを読むPython機械学習初心者用!サポートベクターマシンの概要と実装
機械学習のアルゴリズムの中でも優秀な識別器であるサポートベクターマシン(SVM)はPythonのscikit-learnで簡単に実装することが出来ます。ここではサポートベクターマシンを実際に使うために必要な知識の概要とPythonによるサンプルコードを紹介します。
続きを読むPython/sklearnで学習データの前処理!標準化と正規化
機械学習を使って学習や予測を行う際は、データの前処理は欠かすことのできないプロセスです。ここではデータの標準化と正規化の概要と必要性、Pythonとscikit-learnによるコーディング例を紹介します。
続きを読むPython/seabornで行列散布図!ペアプロット方法と設定
行列散布図(ペアプロット)は大量の変数間の関係を一望できるため大変有用なデータ可視化手法です。しかし、表計算ソフトやPythonのmatplotlibを使ってペアプロットを作成するには思いのほか膨大な労力を要します。ここではseabornというライブラリを使い、わずか数行でペアプロットを描画する方法を紹介します。
続きを読むPython機械学習!scikit-learnインストールと例題
Pythonは機械学習の分野で人気のプログラミング言語です。機械学習プログラミングは自力で書くと大変ですが、Python機械学習ライブラリscikit-learnを使えばハードルはグッと下がります。ここではscikit-learnのインストールと例題の紹介を行います。
続きを読む