ブラウザ上でGPUを使ったPython開発ができるGoogle Colaboratoryを使ってみます。ここでは知識ゼロから始められるようにGoogle Colabの概要から説明し、PyTorchによる機械学習を行うための環境構築を行います。
続きを読む機械学習
PyTorchで色々な非線形関数を回帰してみたらすごかった
ニューラルネットワークは複雑な非線形関数を近似する事ができるため、回帰問題を解いてみると効果がわかりやすいです。ここではPyTorchのネットワークモデルで色々な非線形関数を回帰してみた結果とそのコードを紹介します。
続きを読むPyTorchのネットワークモデルをクラスで書く時のメモ
PythonのディープラーニングフレームワークであるPyTorchはネットワークモデルをモジュール化して使うとわかりやすいコードになります。ここでは初心者向けにクラスの使い方と、簡単な線形ネットワークを例にモジュール化の方法を紹介します。
続きを読むPyTorchのネットワークモデルを使って線形回帰をする方法
ディープラーニングのフレームワークであるPyTorchを学ぶために、まずは超簡単な線形回帰問題を解いてみます。ここではtorchのネットワーク構築方法、最適化モデル選択、損失関数の設置方法と基礎的な使い方を紹介します。
続きを読むAI実装検定S級に合格したので勉強方法と試験内容を振り返る
AI系の検定として最近新しく生まれた「AI実装検定」。A級に続きAI実装検定の最高峰であるS級も合格しました。ここではこの検定の概要と、合格までに何をしたか、どんな問題が出たか、これから受ける人へのアドバイスをまとめておきます。
続きを読むAI実装検定S級対策!「画像処理100本ノック」学習記録・カンペ
第1回AI実装検定S級を受験しますが、例題が無いので出題範囲になっている「画像処理100本ノック」を学習して記録をつけます。といっても、まだまだ理解には遠くおよばず、ほんとにメモレベル!
続きを読む機械学習コンペで人気のLightGBMをPythonで使ってみた
Kaggleを始めました!これまで古典的な機械学習手法は少し使えるようにしてきたつもりですが、KaggleではLightGBMでハイスコアを出している人が多いそうです。ここではLightGBMのインストールと使い方を学んでみます。
続きを読むPythonで簡単にホールドアウト法用のデータ分割をする方法
機械学習ではホールドアウト法として1つのデータセットから訓練データとテストデータを分けることをよく行います。ここでは、Pythonのscikit-learnに含まれるtrain_test_splitを使った簡単なデータ分割方法を紹介します。
続きを読む【G検定チートシート】AI関連法律や動向含む試験当日のカンペ
JDLAが主催するディープラーニングG検定は試験時にGoogle検索や書籍の参照がOKなWeb検定です。ここでは筆者が受験時に素早く用語の参照ができるようメモを残しておきます。
続きを読む【G検定の学習】ディープラーニングの概要と具体的な手法
JDLAが主催するG検定ではディープラーニングの全体像や各種問題点、手法に関する問題が出題されます。ここでは、ディープラーニングの概要と具体的な手法の紹介をしていきます。
続きを読む