ディープラーニングのフレームワークであるPyTorchをインストールしましたが、最初は右も左もわからない状態だと思います。そんな時はまず公式ページのチュートリアル「What is PyTorch?」で使い方を覚えましょう。
続きを読む機械学習
ディープラーニング初心者がPyTorchを選んだ3つの理由
PyTorchはPythonでディープラーニングのコードが簡単に書けるようになるフレームワークです。ここではディープラーニング初心者である筆者が数あるフレームワークからPyTorchを選んだ理由とインストール方法を紹介します。
続きを読むPython/Pandasで時系列データを月毎に集計する方法
Pandasは機械学習の入力データ前処理で重宝されるPythonのライブラリです。ここではPandasデータフレームで読み込んだタイムスタンプ付きの時系列データを月毎に集計(合計・平均・最大値・最小値)する方法を紹介します。
続きを読む【G検定の学習】機械学習の具体的な手法や概要のまとめ
JDLAが主催するG検定では、ディープラーニング以外の機械学習手法に関する設問も出題されます。ここでは、主な機械学習手法の全般を体系的にまとめることで検定対策を行います。
続きを読むPython決定木可視化!Graphvizの導入とdot処理方法
機械学習の決定木分析で構築されたツリーは、コンピュータが生成した条件分岐ノードの情報が記載されます。ここではPython/scikit-learnで計算した決定木をdotファイルで出力し、Graphvizというツールをインストールして可視化する方法を紹介します。
続きを読むPython/sklearnで決定木分析!分類木の考え方とコード
決定木分析は条件分岐の繰り返しで分類や回帰を行う計算です。機械学習の中でもディープラーニングと異なり結果の解釈が容易という利点があります。ここでは決定木の中でも分類木分析の考え方概要とPython/scikit-learnによる計算方法を紹介します。
続きを読むPython機械学習済モデルをpickleで保存して復元する方法
機械学習で構築した学習済モデルは通常一度プログラムを終了してしまうとメモリから解放され、再び使うためには再度学習し直さなければなりません。ここでは学習して出来上がったモデルをPythonのpickleを使ってファイルに保存し、再度復元する方法を紹介します。
続きを読むPython機械学習!scikit-learnによる単回帰分析
Pythonで機械学習をする時の第一歩として線形回帰問題があります。ここでは線形回帰の中でも最も簡単な単回帰分析のPythonプログラミングを通して最初の一歩を踏み出します。
続きを読むPython機械学習!scikit-learnインストールと例題
Pythonは機械学習の分野で人気のプログラミング言語です。機械学習プログラミングは自力で書くと大変ですが、Python機械学習ライブラリscikit-learnを使えばハードルはグッと下がります。ここではscikit-learnのインストールと例題の紹介を行います。
続きを読む