Pythonを使えば、普段の会話を精度良く翻訳するアプリも簡単につくることができます。まずspeech_recognitionによる音声認識技術を使い、音声をテキストに変換、そして次にdeep_transtatorを使ってテキストを任意の言語に翻訳します。ここではこれらを駆使したPythonプログラムの例を紹介します。
続きを読むAI
YOLOv8のposeで動画ファイルから姿勢推定をしてみた
Pythonの外部ライブラリultralyticsを用いれば、YOLOを使ってバウンディングボックスの描画だけでなく、高度な姿勢推定も実現可能です。この記事では、動画ファイルに対してposeモデルを利用した姿勢推定コードの作成と利用方法を分かりやすく紹介します。
続きを読むPython/ultralyticsでYOLOv8をただ使ってみた
機械学習に強いPythonとはいえ、ゼロから精度の良い物体検出アプリをつくるのは骨が折れるでしょう。しかしultralyticsというライブラリを使えば数行のコードでキーとなる検出部分を書くことができます。ここではultralyticsを用いたYOLOv8の説明を行います。
続きを読むPython/SpeechRecognitionで音声認識してみた
機械学習で有名なPythonを使って「音声認識」をしてみます。今回は初心者が最も導入しやすいSpeechRecognitionをインストールし、Googleのサービスを使ったGoogle Speech Recognitionによる音声認識プログラミング事例を紹介します。
続きを読む1つの応答曲面を遺伝的アルゴリズムで探査するPythonコード例
機械学習で応答曲面を求めた後、その曲面(学習済モデル)の最小値や最大値を探査したい場合があります。ここではPythonによる実現の例として、とりあえずPyTorchで機械学習→PlatypusのNSGA-IIで探査といった方法を試してみます。
続きを読むPyTorchモデルをcloudpickleで保存・読み込みする方法
scikit-learnではpickleを使って学習済のモデルを保存したり読み込んだりできていましたが、PyTorchのモデルが読み込めない問題に直面したので解決方法をメモします。ここでは最も簡単だと感じたcloudpickleを使った方法を紹介します。
続きを読むPlatypusで多目的最適化からパレートフロントを求める方法
多目的最適化とは、2つ以上のトレードオフ関係にある複数の目的関数を同時に最適化する方法の事です。ここではPythonライブラリであるPlatypusを使って簡単な多目的最適化を行い、パレートフロントを求めるコードを紹介します。
続きを読むGoogle ColabでPyTorch開発環境を構築する方法
ブラウザ上でGPUを使ったPython開発ができるGoogle Colaboratoryを使ってみます。ここでは知識ゼロから始められるようにGoogle Colabの概要から説明し、PyTorchによる機械学習を行うための環境構築を行います。
続きを読むPyTorchで色々な非線形関数を回帰してみたらすごかった
ニューラルネットワークは複雑な非線形関数を近似する事ができるため、回帰問題を解いてみると効果がわかりやすいです。ここではPyTorchのネットワークモデルで色々な非線形関数を回帰してみた結果とそのコードを紹介します。
続きを読むPyTorchのネットワークモデルをクラスで書く時のメモ
PythonのディープラーニングフレームワークであるPyTorchはネットワークモデルをモジュール化して使うとわかりやすいコードになります。ここでは初心者向けにクラスの使い方と、簡単な線形ネットワークを例にモジュール化の方法を紹介します。
続きを読む