ディープラーニングのフレームワークであるPyTorchをインストールしましたが、最初は右も左もわからない状態だと思います。そんな時はまず公式ページのチュートリアル「What is PyTorch?」で使い方を覚えましょう。
続きを読む2020年 1月 の投稿一覧
ディープラーニング初心者がPyTorchを選んだ3つの理由
PyTorchはPythonでディープラーニングのコードが簡単に書けるようになるフレームワークです。ここではディープラーニング初心者である筆者が数あるフレームワークからPyTorchを選んだ理由とインストール方法を紹介します。
続きを読むPython/Pandasで時系列データを月毎に集計する方法
Pandasは機械学習の入力データ前処理で重宝されるPythonのライブラリです。ここではPandasデータフレームで読み込んだタイムスタンプ付きの時系列データを月毎に集計(合計・平均・最大値・最小値)する方法を紹介します。
続きを読む【G検定の学習】機械学習の具体的な手法や概要のまとめ
JDLAが主催するG検定では、ディープラーニング以外の機械学習手法に関する設問も出題されます。ここでは、主な機械学習手法の全般を体系的にまとめることで検定対策を行います。
続きを読むPython/k-means法で教師なし学習!クラスタリング概要
教師なし学習であるクラスタリングにはk-means法という手法があります。ここではk-means法のアルゴリズム概要を説明し、簡単に計算が可能なscikit-learnを使ったPythonによるサンプルコードを紹介します。
続きを読むPython/sklearnのk近傍法!kNNで多クラス分類する
k近傍法(kNN法)は数ある機械学習手法の中でも簡単なアルゴリズムを持っています。ここではkNN法の概要とPython/scikit-learnによるコードで実際に簡単な分類問題を解く方法を習得することを目標とします。
続きを読むPythonでフォルダ内全wavをスペクトログラムに変換してみた
音声ファイルをスペクトログラム表示することで、音声の周波数・時間・レベルの変化を一度に確認することが可能です。ここではさらにフォルダ内に保存された全wavファイルに対しSTFT計算し、スペクトログラム画像を作成する方法を紹介します。
続きを読むランダムフォレストの全決定木を可視化してGIFアニメにしてみた
機械学習アルゴリズムの1つであるランダムフォレスト分析は多数の決定木を作成して多数決で予測する手法です。決定木が沢山できますが、「どんな木が出来たのかな~」っと何気なく思った人のために、眺めていると無心になれる「全決定木可視化動画」の作り方を紹介します。
続きを読むPython機械学習!ランダムフォレストの概要とsklearnコード
機械学習アルゴリズムの1つ、ランダムフォレストは決定木分析とアンサンブル学習を用いた汎化性能の高い分析手法です。ここではランダムフォレストを理解するための概要説明と、Python/scikit-learnによるコード習得を目標とします。
続きを読むPython/sklearn機械学習!ロジスティック回帰で分類する
ロジスティック回帰は回帰と名前が付いていますが、機械学習では分類問題に使われます。ここでは、現象の発生確率を検討できることが特徴であるロジスティック回帰の概要とPython/scikit-learnによるコーディング習得を目標とします。
続きを読む